GEOTHERMAL ENERGY UTILIZATION IN SEKULE

Andrea Vranovská

Oto Halás

02.02.2007

Bratislava

HYDROGEOLOGICAL PART

HYDROGELOGICAL INTRODUCTION

- The whole area is situated in Vienna Basin sedimentary basin of Paleogene rocks
- Vienna basin is the oil and gas prospective area explored by a lot of geophysic measurements and oil-gas boreholes
 - The basin is divided by faults into the smaller structures
- The best gas collector is Labsky sands member of the Middle Badenian age (about 50 m of sands)

The area is not explored by deep hydrogeological wells, but from gas practice we consider Labsky sands member as the best aquifer in the area

MAP OF THE AREA

DATA OF ADJACENT BOREHOLES

Drill	MJ-2	MJ - 3	SEK-1	BJ-8			
	Moravsky Jan 2	Moravsky Jan 3	Sekule 1	Borsky Jur			
Realisation	1948	1961	1996	1967			
GEOLOGY		Depth (m)					
Pannonian	0 - 915	0 - 835	0 - 605	0 - 475			
marly clays							
Sarmatian	915 - 1130	835 - 1080	605 - 1200	475 - 900			
clays, sands							
Badenian							
Upper Badenian	1130 - 2432	1080 - 1710	1200 - 1930	900 - 1691			
sands							
Middle Badenian		1710 - 2020	1930 - 2240	1691 - 1930			
clays, Labsky sands							
Lower Badenian		2020 - 2290	2240 - 2600	1930 - 2190			
pelits							
Karpathian		2290 - 2500	2600 - 4247	2190 - 3620			
calcareous clays							
Mesozoic			4247 - 4600	3620 - 4000			
quartzite, dolomites							
limestones							
Utilisation	decommissioned	decommissioned	conserved	fresh water source			

TECTONIC CONDITIONS

- The seismic measurements were done in the area
 From the tectonic viewpoint the Sekule park area is located in the Jansky fault zone of NE-SW direction
 - Borehole MJ-3 was intersected by both of Jansky faults (the main and peripheral ones)
- The Jansky fault system divides the site into:
 - <u>Kuty depression</u> W part <u>Labsky sands member</u> is located deeper position (about 2 950 – 3 500 m) - *clayey development of lower porosity*
 - <u>Heaved Jansky Block</u> E part <u>Labsky sands member</u> is located in higher position (about 1 690 – 2 240 m, thickness about 250 – 300 m) – sandy development of higher porosity and permeability (SEK-1, BJ-8)

CROSS-SECTION

SLOVGEOTERM

GEOTHERMIC CONDITIONS

Most reliable information is the thermic measurements in the SEK-1 borehole

Depth (m)	SEK-1 (°C)	MJ - 3
500	14	
1 000	26	
1 500	39	
2 000	53	1710 - 2020 m
2 500	65	Labsky sands
3 000	79,5	

HYDROGEOLOGICAL CONDITIONS

- Indirect information have been obtained from:
 - the logging measurements done in gas boreholes (SP, AR) – appoints the sandy layers and higher permeable zones
 - the testers performed during the drilling

HYDROGEOCHEMICAL CONDITIONS

- the hydrogeochemical information is gained from the water analyses done in neighboring boreholes
 - there are salty waters of NaCl(HCO3) type according the previous analyses we can expect the gas in the well with 60 - 90% of methane

Stratigraphic member	TDS (mg/l, ppm)
Pannonian	3 000 - 8 000
Sarmatian	8 000 - 14 000
Badenian	8 000 - 20 000
Karpatian	14 000 - 19 000

OUR PROPOSAL

- Drill the geothermal well in the neighborhood of the former borehole MJ-3 up to 2 300 m
 - The Labsky sands member is expected in the depth 1 700 2 050 m
- The expected temperature in the depth 2 000 m is 53°C, in the depth 2 300 m is 60°C
- Expected flowrate is 5 20 l/s
- TDS 8 000 20 000 mg/l of NaCl(HCO3) chemical type

ENERGY PART

GEOTHERMAL WATER PARAMETERS
Flow rate of 5 – 20 l/s
Temperature 50°C
TDS 8 – 20 g/l

Temperature [°C]	50	50	50
Flow rate [l/s]	5	10	20
Heat potencial [MWt]	0,73	1,47	2,93

HEAT DEMAND

Space heating:
Spa:
TOTAL HEAT DEMAND:

10,6 MWt 0,8 MWt **11,4 MW**t

lajetkovy Holding	A.S /	Slovak Landinvest Sro	
-------------------	-------	-----------------------	--

Utility Definition Sekule, Slovakia			Electricity			Hea	ting	Total	
Area I, Golf Deve	lopment	m2 / number	KW	Installed KVA	KW	Simul- taneuos KVA	m2 or m3	KW/m2	KW
Golf Course	Clubhouse	1.200	0,10	120,00	0,05	60,00	1.200	0,05	6
	Proshop	200	0,10	20,00	0.05	10.00	200	0.05	1
	Driving Range, Caddie house	500	0,10	50,00	0,05	25,00	500	0,05	2
	Maintenance building	500	0,10	50,00	0,05	25,00	500	0,05	2
Total Area I	×			240,00		120,00	2.400		12
Area II, Resident	ial Development								
Residential Lots	130 medium lots / +1.200 m2	130	7,00	910,00	1,50	195,00	97.500	0,02	1.95
Residential Lots	80 Large Lots / + 2.000 m2	80	7,00	560,00	1,50	120,00	80.000	0,02	1.60
Residential Lots	33 Super Lots + 3.000 m2	33	7,00	231,00	1,50	49,50	49.500	0,02	9
Apartements	300 Units	300	7,00	2100,00	1,50	450,00	172.800	0,02	3.45
Roads & Open sp	bace								
Total Area II				3801,00		814,50	399.800		7.99
Area III, Hotel D	evelopment								
Hotel	150 kamers	150	2,00	300,00	1,00	150,00	10.000	0,05	50
Spa	500 m2	500	0,20	100,00	0,10	50,00	500	0,05	2
Total Area III				400,00		200,00	10.500		52
Area IV, Comme	rcial Services & Retail Areas								
Retail	4.000 m2	4.000	0,10	400,00	0,06	240,00	4.000	0,05	20
Commercial Serv	ices 30.000 m2	30.000	0,10	3000,00	0,06	1800,00	30.000	0,05	1.50
Total Area IV				3400,00		2040,00	34.000		1.70

HEATING SYSTEM DESIGN

- District heating system with central heat source
- Temperature gradient 80/40°C
- Gas boilers as peak load and backup heat source
- Low temperature heating systems in buildings
 - Floor heating
 - Large radiators

PROCESS SHCEME

ANNUAL HEAT PRODUCTION

GW flow rate	Maximal heat output	Annual heat production	Ratio
[l/s]	[MW _t]	[GJ]	[%]
20	2,9	65 000	68
10	1,5	37 000	39
5	0,7	15 000	16
TOTAL	11,4	95 000	100

ENERGY DURATION CHART

NATURAL GAS SAVINGS

GW flow rate	Natural gas	Annual	Annual
	consumption	sa∨ings	sa∨ings
[l/s]	[m ³]	[mil. SK]	[%]
20	935 640	14,5	41
10	1 681 420	7,9	22
5	2 223 900	3,4	10
Only gas boilers	2 935 571	-	-

ONLY natural gas consumption and electricity consumption in heat pumps is taken to account!

INVESTMENT AND OPERATIONAL COSTS

... ARE COMMING SOON...

CONCLUSIONS

Significant part of annual heat consumption can be covered by geothermal energy (up to 68%) Significant natural gas savings can be achieved (up to 14,5 mil. SK) Geothermal energy constitutes independent and reliable renewable energy resource

Joint stock company Palisády 39, 811 06 Bratislava Slovakia Phone: +421 2 54 41 77 41 slovgeoterm@stonline.sk

